Mark Scheme		Unit Code 2849	Session June	Year 2005	FINAL
Question	Expected answers				Marks
1 (a) (i)	(Secondary) amide (1).				1
1 (a) (ii)	Ethanoyl chloride ($\left.\mathrm{CH}_{3} \mathrm{COCl}\right)$ / ethanoic anhydride $\left(\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}\right)$ (1).				1
1 (b) (i)	93 (1).				1
1 (b) (ii)	16 (1) ecf for 92 then 15.				1
1 (b) (iii)	$\mathrm{NH}_{2}(1)$ ecf CH_{3}.				1
1 (b) (iv)	$\mathrm{C}_{6} \mathrm{H}_{5}^{+}$ allow Correct structure/molecular formula for phenyl group (1); positive charge on structural formula (1).				2
1 (b) (v)	 NH_{2} group on molecule (1); phenyl group (1).				2
1 (b) (vi)	Amino group (NH_{2}) reacts with/accepts H^{+}ions/protons (1); Resulting ion attracts water molecules/salt formed is soluble / ion formed can interact with other species in solution (1).				2

\begin{tabular}{|c|c|c|}
\hline 1 (c) \& \begin{tabular}{l}
\begin{tabular}{|c|c|}
\hline chemical shift \& type of proton \\
\hline 2.1 \& - \\
\hline 11.4 \& - \\
\hline
\end{tabular} \\
1 mark each for type of proton (2); \\
(1).
\end{tabular} \& 3 \\
\hline 1 (d) \& \begin{tabular}{l}
One mark each for points in bold and then any three others up to a total of 6 marks: \\
Pencil line near bottom; of plate; dissolve acetanilide in ethanol; spot sample of mixture on line; solvent in beaker below sample not ethanol; cover beaker (with lid/film); \\
leave until solvent front nears top of plate; remove and dry plate; \\
(UV light or iodine) to locate (use of locating agent); use of a standard compound to identify acetanilide/ \(R_{\mathrm{f}}\) values the same / spots the same height. \\
QWC \\
Award the mark if there is only one error in spelling, punctuation or grammar in any two relevant sentences.
\end{tabular} \& 6

1 \\

\hline 1 (e) \& | 2 marking points from |
| :--- |
| Synthesis (1); |
| modification of structure/change properties e.g. solubility /make more effective e.g. increase time when effective (1); |
| analysis/identification(1) |
| checking purity (1) |
| scaling-up processes (1) |
| formulation of preparation e.g. tablets, solution, spray etc. (1). |
| Do NOT allow testing alone or testing for safety etc. or on animals. | \& 2 \\

\hline \& Total mark \& 23 \\
\hline
\end{tabular}

Question	Expected answers	Marks
2 (a)	Disrupts lattice/lattice less ordered AW (1). Accept that layers in structure are no longer able to slide over one another as easily.	1
2 (b) (i)	Any two of the following four marking points: Absorb light/in visible region (1); 3d energy shell/ energy levels split into 2 groups AW (1); electrons move up/promoted/excited to higher (energy) level (1); transmits (or reflects) the complementary colour/light not absorbed (1).	2
2 (b) (ii)	 6 water molecules around Ti in correct shape and charge correct (1); O shown bonded to Ti (1); octahedral shape (1).	3
2 (b) (iii)	Two different arrangements/isomers of ligands arbund central ion (1); show structures of the cis and trans isomers using diagrams/ describe the two isomers e.g. chlorines may be adjacent or opposite or describe cis-trans isomers (1).	2
2 (c) (i)	$\mathrm{Mol} \mathrm{dm}{ }^{-3}$ (1).	1
2 (c) (ii)	$\begin{aligned} & 1.300 \times 10^{-4}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2} / 0.010(1) ; \\ & {\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\left(1.3 \times 10^{-6}\right)^{1 / 2}(1) ;} \\ & =1.14 \times 10^{-3} 1 \text { mark for answer if sig figs are correct } . \end{aligned}$	3
	Total mark	12

Question	Expected answers	Marks
3(a)	Full detail needed for 2 marks (2) Two -OH groups on C chain (1); correct C chain (1).	2
3 (b) (i)	$\begin{aligned} & \text { 1,6-diaminohexane }(2) ; \\ & \text { aminohexane/hexyldiamine (1); } \\ & \text { 1,6-di (1). } \end{aligned}$	2
3 (b) (ii)	The two molecules add/reactjoin together and eliminate (1); a molecule of water (1).	2
3 (c)	One mark for the point in bold and then any one other: Nylons have hydrogen bonding between the chains/nylons can hydrogen bond to polyester chains (1); hydrogen bonding is much stronger than (permanent dipole-permanent dipole) forces between polyester chains AW (1); greater energy/force will be needed to separate polymer chains in nylons (1).	2
3 (d) (i)	Burning: no solid waste (which is expensive to dispose of) / no landfill needed / energy recycled (1); burying: no environmental issues with gas emissions from burning AW /nonbiodegradable therefore no threat to environment AW (1).	2
3 (d) (ii)	(Heat under) reflux (1); (moderately concentrated) hydrochloric acid or sodium hydroxide (accept sulphuric acid) (1).	2
3 (d) (iii)	$\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow 3 \mathrm{Br}_{2}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ correct chemical species (1); balanced may be $\times 2$ (1). Ignore state symbols.	2
3 (e)	Any four of the following five marking points: Dilute bromine solution to make a range of concentrations (1); select suitable filter for colorimeter (1); zero colorimeter with water (1); measure absorbance/transmittance of each bromine sample (1); plot absorbance/transmittance against concentration (1).	4

Question		Expected answers	Marks
3 (f) (i)			3
	reactant	order	
	bromide ion, Br^{*}	1	
	bromate ion, BrO_{3}^{-}	1	
	acid, H^{+}		
	1 mark for each order correct (3).		
3 (f) (ii)	```Rate =k\times[Br(aq)] x[BrO3 any ecf from f(i). mol}\mp@subsup{}{}{-3}\mp@subsup{\textrm{dm}}{}{9}\mp@subsup{\textrm{s}}{}{-1}\operatorname{ecf}(1)```		2
		Total mark	23

Question	Expected answers	Marks
4 (a) (i)	1.56 V (1) ignore any sign.	1
4 (a) (ii)	Non-standard conditions / not $1 \mathrm{~mol} \mathrm{dm}^{-3}$ concentrations of correct ions / not $25^{\circ} \mathrm{C}$ /incorrèct ions in solution (1)	1
4 (a) (iii)	Zinc forms/goes into solution as zinc ions $/ \mathrm{Zn} / \mathrm{Zn}^{2+}$ has more negative electrode potential ora (1); electrons flow from zinc (into the wire)/Zn loses electrons (1).	2
4 (b)	(High resistance) voltmeter (connected to metal electrodes) (1); salt bridge (dipping in both solutions) (1); correct metal in solutions of correct ions (in both half-cells) (1); concentrations $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ (1); temperature $25^{\circ} \mathrm{C} / 298 \mathrm{~K}$ (1).	5
4 (c)	$\mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$ balanced equation, even if reverse direction (1); correct direction (1); $\mathrm{H} \rightarrow \mathrm{H}^{+}+\mathrm{e}^{-1} 1$ mark only.	2
4 (d)	$3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}(2)$ 20 electrons added (1); correct arrangement of orbitals, allow if $3 d$ written after $4 s$ (1). $3^{\text {rd }}$ ionisation energy of Zn too high/too much energy needed to remove an electron from/break into $3^{\text {rd }}$ shell AW (1)	3
	Total mark	14

Question	Expected answers	Marks
5 (a) (i)	 Bond correct (1) partial charges correct (1).	2
5 (a) (ii)	Mark any one chiral atom correct (see above) no mark awarded if a wrong atom is also marked (1); C atom is asymmetrical/bonded to four different atoms/groups (1).	2
5 (a) (iii)	(α-)helix (1); (β-) pleated/sheet (1).	2
5 (b)	Any two marking points from the following: Covalent/disulphide bridges/bonds (1); ionic (1); instantaneous dipole-induced dipole forces (1); permanent dipole-permanent dipole forces / permanent dipole-induced dipole forces (1).	2
$\begin{aligned} & 5 \text { (c) (i) } \\ & 5 \text { (c) (ii) } \end{aligned}$	One mark each for points in bold and then any three others up to a total of 5 marks for both parts: Allow cross marking of points. c(i) Enzyme used to cut required gene (1); from DNA of organism (1); plasmids/rings of DNA extracted from bacterial cells (1); enzyme used to cut plasmids (1); c(ii) new gene spliced in using other enzymes (1); modified plasmids replaced in bacterial cells (1); cells multiply in fermenter/ cultured (1); new gene causes synthesis of the required protein (1).	5
5 (d) (i)	Moderately concentrated acid/ $\mathrm{HCl}(\mathrm{aq})$ (1). Do not allow dilute acid or sulphuric acid.	1
5 (d) (ii)	Reaction mixture is boiled and vapours are cooled AW (EVAP \& COND mark) (1) sealed top is a CON; liquid is returned to mixture / no loss of reactants or products AW (1).	2
5 (e)	Type of H atoms present AW (1); (relative) numbers of each type (1).	2
	Total mark	18

