Chemistry of Materials

Mark Scheme

Mark	Scheme	Unit Code 2849	Session June	Year 2005	FINAL
Question		Expe	ected answers		Marks
1 (a) (i)	(Secondary)	amide (1).			1
1 (a) (ii)	Ethanoyl chlo	oride (CH ₃ COCI) / e	thanoic anhydrid	= ((CH ₃ CO) ₂ O) (1).
1 (b) (i)	93 (1).		T		1
1 (b) (ii)	16 (1) ecf for	92 then 15.			1
1 (b) (iii)	NH ₂ (1) ecf C	H ₃ .			1
1 (b) (iv)	C ₆ H ₅ ⁺ allow Correct struc positive charg	+ ture/molecular form ge on structural form	ula for phenyl gro nula (1).	5ир (1);	2
1 (b) (v)	NH ₂ group or	H H H (1);			2
1 (b) (vi)	Amino group	(NH ₂) reacts with/a	ccepts H ⁺ ions/pr	otons (1);	2
	Resulting ion formed can in	attracts water mole	ecules/salt formed becies in solution	d is soluble / io (1).	on

1 (c)		3		
	chemical shift type of proton			
	$2.1 \cdot \qquad \qquad \bigcirc \qquad \bigcirc$			
	11.4 0			
	1 mark each for type of proton (2); $H_3C - C$ OH			
1 (d)	(1). One mark each for points in bold and then any three others up to a	6		
	total of 6 marks: <u>Pencil</u> line near bottom; of plate; dissolve acetanilide in <u>ethanol</u> ; spot sample of mixture on line; solvent in beaker below sample <i>not ethanol</i> ; cover beaker (with lid/film) ; leave until solvent front nears top of plate; remove and dry plate; (UV light or iodine) to locate (use of locating agent); use of a standard compound to identify acetanilide/ R _f values the same / spots the same height.			
	QWC Award the mark if there is only one error in spelling, punctuation or grammar in any two relevant sentences			
1 (e)	2 marking points from	2		
	Synthesis (1); modification of structure/change properties <i>e.g. solubility</i> /make more effective <i>e.g. increase time when effective</i> (1); analysis/identification(1) checking purity (1) scaling-up processes (1)			
	formulation of preparation e.g. tablets, solution, spray etc. (1). Do NOT allow testing alone or testing for safety etc. or on animals.			
	Total mark	23		

Mark Scheme

2

Question	Expected answers	Marks
2 (a)	Disrupts lattice/lattice less ordered AW (1). Accept that layers in structure are no longer able to slide over one another as easily.	1
2 (b) (i)	Any two of the following four marking points: Absorb light/in visible region (1); 3d energy shell/ energy levels split into 2 groups AW (1); electrons move up/promoted/excited to higher (energy) level (1); transmits (<i>or</i> reflects) the complementary colour/light not absorbed (1).	2
2 (b) (ii)	$\begin{bmatrix} H_2 O_{H_2} & H_2 \\ H_2 O_{H_2} & H_2 \\ H_2 & O_{H_2} \end{bmatrix}^{3+}$ 6 water molecules around Ti in correct shape and charge correct (1); 0 shown bonded to Ti (1); octabedral shape (1)	3
2 (b) (iii)	Two different arrangements/isomers of ligands around central ion (1); show structures of the <i>cis</i> and <i>trans</i> isomers using diagrams/ describe the two isomers e.g. chlorines may be adjacent or opposite or describe <i>cis</i> -trans isomers (1).	2
2 (c) (i)	Mol dm ⁻³ (1).	1
2 (c) (ii)	1.300 x $10^{-4} = [H^{+}(aq)]^2 / 0.010 (1);$ $[H^{+}(aq)] = (1.3 x 10^{-6})^{1/2} (1);$ $= 1.14 x 10^{-3}$ 1 mark for answer if sig figs are correct.	3
	Total mark	12

Question	Expected answers	Marks
2(-)		
3(a)	Hull detail needed for 2 marks	2
	рана пара на п Пара на пара на	
	Two –OH groups on C chain (1):	
	correct C chain (1).	
3 (b) (i)	1,6-diaminohexane (2);	2
	aminohexane/hexyldiamine (1);	
0 (1) (1)	1,6-di (1).	
3 (D) (II)	I he two molecules add/react/join together and eliminate (1);	2
3 (c)	One mark for the point in hold and then any one other	2
		_
	Nylons have hydrogen bonding between the chains/nylons can hydrogen	
	bond to polyester chains (1);	
	hydrogen bonding is much stronger than (permanent dipole-permanent dipole)	
	forces between polyester chains AVV (1);	
$\frac{3}{(d)}$ (i)	Burning: no solid waste (which is expensive to dispose of) / no landfill needed /	2
	energy recycled (1):	2
	burying: no environmental issues with gas emissions from burning AW /non-	
	biodegradable therefore no threat to environment AW (1).	
3 (d) (ii)	(Heat under) reflux (1);	2
	(moderately concentrated) hydrochloric acid or sodium hydroxide (accept	
3 (d) (iii)	$BrO_2(aq) + 6H^{\dagger}(aq) + 5Br^{-}(aq) \rightarrow 3Br_2(aq) + 3H_2O(l)$	2
	correct chemical species (1);	_
	balanced may be x2 (1).	
	Ignore state symbols.	
3 (e)	Any four of the following five marking points:	4
	Dilute bromine solution to make a range of concentrations (1).	
	select suitable filter for colorimeter (1);	
	zero colorimeter with water (1);	
	measure absorbance/transmittance of each bromine sample (1);	
	plot absorbance/transmittance against concentration (1).	

Question	Expected answers			Marks
3 (f) (i)				3
	reactant	order		
	bromide ion, Br	1		
	bromate ion, BrO ₃	1		
	acid, H⁺	2		
	1 mark for each order	correct (3).		
3 (f) (ii)	Rate = $k \times [Br(aq)] \times [Bar(aq)]$	rO ₃ (aq)] x [H	$(aq)]^2$ (1) ignore state symbols and note	2
	mol ⁻³ dm ⁹ s ⁻¹ ecf (1).			
			Total mark	23

Question	Expected answers	Marks
4 (a) (i)	1.56 V (1) ignore any sign.	1
4 (a) (ii)	Non-standard conditions / not 1 mol dm ⁻³ concentrations of correct ions / not 25 °C/incorrect ions in solution (1)	1
4 (a) (iii)	Zinc forms/goes into solution as zinc ions / Zn/Zn ²⁺ has more negative electrode potential ora (1); electrons flow from zinc (into the wire)/Zn loses electrons (1).	2
4 (b)	(High resistance) voltmeter (<i>connected to metal electrodes</i>) (1); salt bridge (<i>dipping in both solutions</i>) (1); correct metal in solutions of correct ions (<i>in both half-cells</i>) (1); concentrations 1.0 mol dm ⁻³ (1); temperature 25 °C/298 K (1).	5
4 (c)	$H_2 \rightarrow 2H^* + 2e^-$ balanced equation, even if reverse direction (1); correct direction (1); $H \rightarrow H^+ + e^- 1$ mark only.	2
4 (d)	3s ² 3p ⁶ 3d ¹⁰ 4s ² (2); 20 electrons added (1); correct arrangement of orbitals, <i>allow if 3d written after 4s</i> (1). 3 rd ionisation energy of Zn too high/too much energy needed to remove an electron from/break into 3 rd shell AW (1)	3
	Total mark	14

Mark Scheme

Question	Expected answers	Marks
5 (a) (i)		2
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Bond correct (1) partial charges correct (1).	
5 (a) (ii)	Mark any one chiral atom correct (see above) no mark awarded if a wrong atom is also marked (1); C atom is asymmetrical/bonded to four different atoms/groups (1).	2
5 (a) (iii)	(α) helix (1); (β -) pleated/sheet (1).	2
5 (b)	Any two marking points from the following: Covalent/disulphide bridges/bonds (1); ionic (1); instantaneous dipole–induced dipole forces (1); permanent dipole–permanent dipole forces / permanent dipole–induced dipole forces (1)	2
5 (c) (i) 5 (c) (ii)	One mark each for points in bold and then any three others up to a total of 5 marks for both parts: Allow cross marking of points. c(i) Enzyme used to cut required gene (1); from DNA of organism (1); plasmids/rings of DNA extracted from bacterial cells (1); enzyme used to cut plasmids (1); c(ii) new gene spliced in using other enzymes (1); modified plasmids replaced in bacterial cells (1); cells multiply in fermenter/ cultured (1); new gene causes synthesis of the required protein (1).	5
5 (d) (i)	Moderately concentrated acid/ HCl(aq) (1).	1
5 (d) (ii)	Reaction mixture is boiled and vapours are cooled AW (EVAP & COND mark) (1) sealed top is a CON; liquid is returned to mixture / no loss of reactants or products AW (1).	2
5 (e)	Type of H atoms present AW (1); (relative) numbers of each type (1).	2
	Total mark	18